二元函数切平面2025-10-12对于二元函数 f(x,y)=x2+y2f(x,y) = x^2+y^2f(x,y)=x2+y2 ,其一点上的全微分为: df=∂f∂xdx+∂f∂ydy=2xdx+2ydydf = \frac{ \partial f }{ \partial x } dx + \frac{ \partial f }{ \partial y } dy = 2xdx+2ydydf=∂x∂fdx+∂y∂fdy=2xdx+2ydy (x0,y0)(x_0, y_0)(x0,y0) 处的切平面为: P(x,y)−f(x0,y0)=∂f∂x(x−x0)+∂f∂y(y−y0) ⟹ P(x,y)=2x0x+2y0y−x02−y02\begin{align} && P(x,y) - f(x_{0},y_{0}) &= \frac{ \partial f }{ \partial x }(x-x_{0}) + \frac{ \partial f }{ \partial y } (y-y_{0}) \\ \implies && P(x,y) &= 2x_{0}x + 2y_{0}y -x_{0}^2-y_{0}^2 \end{align}⟹P(x,y)−f(x0,y0)P(x,y)=∂x∂f(x−x0)+∂y∂f(y−y0)=2x0x+2y0y−x02−y02 PreviewCode 移动右下角横竖两个滑块,观察切平面的变化与 ∂f∂x\frac{ \partial f }{ \partial x }∂x∂f , ∂f∂y\frac{ \partial f }{ \partial y }∂y∂f 的关系。